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Abstract

We call a finite group Frobenius-like if it has a nontrivial nilpotent normal
subgroup F possessing a nontrivial complement H such that [F,h] = F for
all nonidentity elements h € H. We prove that any irreducible nontrivial F H-
module for a Frobenius-like group F'H of odd order over an algebraically closed
field has an H-regular direct summand if either F' is fixed point free on V or F
acts nontrivially on V' and the characteristic of the field is coprime to the order
of F'. Some consequences of this result are also derived.
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Theorem A. Let G <« GA such that A normalizes a Sylow system of G.
Suppose that G' # G and [G,a] = G for all nonidentity elements a € A. Let
V' be a monzero vector space over an algebraically closed field k and let GA act
on V as a group of linear transformations such that char(k) does not divide
the order of A. Then V4 has a proper A-reqular direct summand if one of the
following holds:

(1) Cv(G) =0,
(ii) [V,G] # 0 and char(k) does not divide the order of G.

The proof of this theorem relies on the following result which can be regarded
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as a generalization of [[2], V.17.13], and is of independent interest too.

Theorem B. Let H be a group in which each Sylow subgroup is cyclic.
Assume that H/F(H) is not a nontrivial 2-group. Let P be an extraspecial
group of order p*™*1 for some prime p not dividing |H|. Suppose that H acts
on P in such a way that H centralizes Z(P), and [P, h] = P for any nonidentity
element h € H. Let k be an algebraically closed field of characteristic not dividing
the order of G = PH and let V be a kG-module on which Z(P) acts nontrivially
and P acts irreducibly. Let X be the character of G afforded by V. Then |H|
divides p™ — 0 and x,, = p‘mﬁp—l—éu where p is the reqular character of H, p is
a linear character of H and 6 € {—1,1}. In particular, Vi contains the regular
kH-module as a direct summand if G is of odd order.

It should be noted that if G is not of odd order, then the module Vg need
not to contain the regular kH-module.

We want to draw the attention of the reader to Theorem 3.2 and Theorem
3.4 in the remarkable paper [8] of Turull which are very close to Theorem B and
Theorem A respectively.

As applications of Theorem A and Theorem B we obtain the following:

Corollary C. Let G be a finite solvable group acted on coprimely by a
Frobenius-like group FH of odd order so that [G,F]# 1. Then Co(H) # 1.

Corollary D. Let P be a p-group acted on coprimely by a Frobenius-like
group FH of odd order so that [P,F] = P. Then
(i) the nilpotency class of P is at most 2log,|Cp(H)|,

(ii) | P| is bounded in terms of |F| and |Cp(H)|,
(i4i) the rank of P is bounded in terms of |F| and the rank of Cp(H).

In the present paper all groups are assumed to be finite. The notation and
terminology are standard, and the rank of a finite group is the minimum number

r such that every subgroup is generated by r elements.



1. Existence of regular modules

In this section we prove a technical result pertaining to the main result of
this paper, which can be regarded as a generalization of [2, V.17.13]. We begin

with a preliminary lemma.

Lemma 1.1. Let FH be a group with F < FH, F' # F and [F,h] = F for all
nonidentity elements h € H. Assume that all Sylow subgroups of H are cyclic.
Then

(i) the groups H' and H/H' are cyclic of coprime orders,

(i) H = H'(y) = Ho(y) with H' N (y) = 1 for some y € H where Hy denotes
the Fitting subgroup of H, and Ho = H' x C,y(H') is cyclic,

(111) w(Ho) = w(H).

Proof. The group FH/F' is Frobenius with Frobenius complement isomorphic
to H. Then (i) follows by [[3], Theorem 5.16]. In particular, H = H'(y) for some
y € H with H'N(y) = 1. On the other hand the group H has a unique subgroup
of order p for each prime p dividing its order by the argument applied in the proof
of Theorem 6.19 in [3] which relies on [[3], Theorem 6.9]. Hence m(Hy) = w(H)
as claimed in (%i). Let now Hy denote the Fitting subgroup of H. Then
Ho = H'(Ho N (y)) and [Ho N (y), H'] = 1, that is, Ho N (y) € C(,y(H') C Ho.
This establishes the claim (). O

Theorem B. Let H be a group in which each Sylow subgroup is cyclic. Assume
that H/F(H) is not a nontrivial 2-group. Let P be an extraspecial group of
order p*™*1 for some prime p not dividing |H|. Suppose that H acts on P in
such a way that H centralizes Z(P), and [P,h] = P for any nonidentity element
h € H. Let k be an algebraically closed field of characteristic not dividing the
order of G = PH and let V' be a kG-module on which Z(P) acts nontrivially
and P acts irreducibly. Let X be the character of G afforded by V. Then |H|
divides p™ — 6 and x, = prT_l‘sp—l—du where p is the regular character of H, p is
a linear character of H and § € {—1,1}. In particular, Vi contains the regular

kH-module as a direct summand if G is of odd order.



Proof. Since all Sylow subgroups of H are cyclic and G/Z(P) is a Frobenius
group with a complement isomorphic to H, we see that H has the properties
described in Lemma 2.1. By [[2], V.17.13] we can assume that H is not nilpotent
and recall that H/F(H) is not a 2-group by hypothesis.

Note that dimV = p™ as x, is a faithful irreducible character of P. Let D
be the representation of G afforded by the module V' and let M be the k-space
of square matrices of size p™ over k. We define a left kH-module structure on

M by letting
h-X :=D(h)XD(h™'), for any X € M and for any h € H.

It is known that H acts on Homy(V,V) via the multiplication (h - T)(v) =
hT(h~'v) for any h € H, T € Homy(V,V), and v € V. Then clearly M is
isomorphic to the k[H]-module Homy(V, V). Furthermore Homy(V,V) and V*®
V are isomorphic as k[H]-modules. So by letting Irr(H) = {¢1,%2,...,%s}
and x, = Zle n;v¥; with nonnegative integers n;,i = 1,...s, we have ¥ =
Zk7l:17»--73 nrnbil; where U is the character of H afforded by M.

Choose a transversal T' for Z(P) in P. Then the set {D(x)|x € T} forms
a basis for M by a result of Burnside [[2], V.5.14] and the fact that D(zz) =
Mz)D(z) for any z € T and z € Z(P). Notice that P/Z(P) is the union of
one H-orbit of length 1 and d = p2|7;T1 orbits of length |H|. Thus we have
M=(I)®eM @ &My with M; = k[H] as H-module for any i =1,2,...,d.

So we get

Uv=1,+ Zp2\7;ﬂ_11/% (1) s = Z nEm R
=1

k=1

Thus the multiplicity of the principal character 1, in ¥ is

P2 —

s
1
(1, 9], =1+ [H] :Zni
k=1

and the multiplicity of any nonprincipal « € Irr(H) in ¥ is

@, 0], = Eata(l) = 3 nen(Wr, vra).

k=1



In particular for any nonprincipal linear character v of H we have

2m71

P —
[H] — ZQGITT(H) NaNaxy-

This gives

1= ZQEI’!‘T(H) ’I’Li - ZQEI’I"T(H) Nalasy, and hence 2 = ZO(EI’F’I‘(H) (na - na’Y)Z

for any nonprincipal linear character v of H.

The group H//E’ of characters of the abelian group H/H' is isomorphic to
H/H'. In particular it is cyclic. Let ¢ be a generator of IT/F It acts on Irr(H)
by multiplication. Let ®;,i = 1,...,b be the orbits of ¢ on Irr(H) and let
m; = |®;|. Then we have 2 = 22’:1 > aca, (Mo — Nay)®. So there are exactly
two elements 8 and v in Irr(H) such that |ng — ngy| = 1 = |ny, — nyy|, and
we have ng, = ngy for any a € Irr(H) — {8,~v}. If 8 € ®; and v ¢ P,, then
npg # Ngy = Nggz = -+ = Ngym,;—1 = N, which is not possible. So if necessary
by reindexing the orbits, we can assume that 5 and ~ are both elements of &,
and ny, =ngy forany i =1,2,...,b— 1 and any o € ®,.

Suppose that v = ¢ for some u € {1,2,...,my — 1}. We have

ng 75 ngy = -+ = Ngyu 75 Npggut+1 = - = Ngymy—1 = Ng.

Since each ®; is either a ¥2-orbit or the union of two ¥2-orbits of the same size
we get \

2= Z Z (o — Ngy2)? = Z (N — Moz ).

i=1 acd; ac®,

So the differences ng — ngyz, ngym,—1 — npgy, Ny — N9z are all nonzero if
u € {2,...,my — 2}, which is a contradiction. If necessary by replacing ¢ by
¥~ we can assume that ng # ngy # ngg2 = -+ = nggm,—1 = ng. We let ngy =
ng+ 0, with some ¢ € {—1,1}. Choose an element «; from ®;,i =1,2,...,b—1,
and let ap, = 8. Then

b
Xt = 3 Moy (i + @) + - ™ 1) + 64, where p = ayd.

i=1



By [[2], V.17.13] we have

—— b
X, = p|H_,|5p’ + o'y = (; Na; Mi0G) ,, + 00,
for some ¢’ € {—1,1} and p' € Irr(H') where p' is the regular character of H'.

It follows by [[4], Exercise 6.2] that if ¢ # j then the sets of irreducible
constituents of the restrictions of o; and «; are disjoint. By Clifford’s theorem
we have
G = € tZ Xij where Ig(X\1) =T;, t;=[H :T;], H = O Tz, and \; j =
A = ]1_5151 = 1,2,...,b. Now {\|j = 1,2,...j,;1;i =1,2,...,b} =
Irr(H'").

It is known that there is a unique & € Irr(T;) such that &7 = a; and
&, = €iXi;1. On the other hand as T;/H' is cyclic, A;; has an extension, say
@, to T;. But then ¢ must belong to the ¥-orbit containing a; which implies
)

a;,, = (¢"),, . Therefore we have

€;, = [aiHm)\i,l] = [(@H)H,,)\i,l] = [(pH, y /\i,l] =1 fOI" any = 1, 2, ey b

m_ s’

Let now e = p|T'\ and ' =\ Then for any v € H’ we have

i0sdo-

e if vy

Xy 0], = ,

e+d if v=y
Set Hy = F(H). Applying [[2], V.17.13] to the action of PHy on V we see in
particular that |Hy| divides p™ — §* for some ¢* € {—1,1}. Then |H’| divides
§—06* = (p™ — %) — (p™ — §) and so we have either § = 6* or |H'| = 2. If
the latter holds then H' < Z(H) and hence H is abelian, which is not the case.
Thus |Ho/H’| divides e. In particular e > 1 and so e + ¢’ > 0 which shows that

[XH?OZZ-O}H 7é 0.
If t;, # 1, then there exists j; # jo such that

€= [XH/7)\i07j1]H/ = [XHM)\’L'O,jO]H/ =€ +6,

which is not possible. Then ¢;, = 1 and hence ' is H-invariant. This yields
that Qi = w = Xig1. In particular o, is a linear character of H and so

mi, = |H/H'|.



Furthermore we have

et 5 — N Mg if dg<b
Na,My +0  if g =0b

Now |Hy/H'| divides the greatest common divisor of e and m;, which forces that
i9p = b as Hy/H' is nontrivial. Furthermore if 6 # ¢’ we have |Hy/H'| = 2, which
implies by Lemma 2.1 that H/H’ is a 2-group. This contradiction shows that

d = ¢’ and hence n,,my = e by the above formula. In particular p];{_“s =Ny, IS

an integer. On the other hand we also have e = [x,,,, Ai,1],;, = na,m; if i <D.

Set next r; = |T;/H'|. As ZIT/E’ = (V|r,) we obtain T; < Kerd". As a; =
{iH for some &; of T; and T; is normal in H, we observe that «;(z) = 0 for any
x ¢ T;. Combining these two observations we get 9" c; = ;. Thus m; divides
r; and hence |H/H'| = r;t; = m;c;t; for some positive integer ¢;. It follows now
that ng,mic;it; = ec;a;(1) and hence ng, = prT_“sc,;ai(l) > %ai(l). Thus
P s

Pt Op occurs in x,. As the degrees of these characters are the same we

see that they are equal. This completes the proof of the theorem. [J

The next example shows that the hypothesis about the structure of H can

not be avoided.

Example. Let V be the GF(3)-space GF(3*). We define the map

(-]):V xV — GF(3) by (:])(x,y) = Tr(d - (zy® — 2%)) for z,y € V, where
d is an element of order 16 in GF(3%)*. One can check that (-|-) is a nonsingular
symplectic form on V.

Let b € GF(3*)* be an element of order 5 and ¢ € GF(3*)* be an element of
order 4. We define 7, : V — V by 7p(z) = b-z and o : V — V by o(z) = c-2°.
Then H = (7, 0) is a subgroup of GL(4, 3) preserving the symplectic form, with
|H| =20, H' = (1) of order 5, and F(H) = H' x (0?) of order 10. Furthermore
h(v) = v for some 0 # v € V and h € H implies that h = 1. So if P is the
extraspecial group of order 3° and exponent 3, then it admits H as a subgroup
of automorphisms of P, centralizing Z(P) and satisfying [P,h] = P for any
nonidentity element h € H. Let x be any irreducible character of the group PH
which does not contain Z(P) in its kernel. Clearly, we have x,, # % p+ou for
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the regular H-character p and any 6 € {—1,1} and p € Irr(H), because

not an integer.

2. Action of a Frobenius-like group

We define a slight generalization of Frobenius groups which we call Frobenius-

like groups and prove the main result of this paper.

Definition 2.1. Let F' and H be nontrivial finite groups such that H acts on
F via automorphisms. Assume that F is nilpotent and [F,h] = F for all non-
identity elements h € H. We call the semidirect product FH a ”Frobenius-like

group” with kernel F' and complement H.

Lemma 2.2. Let FH be a group with F A{FH, and [F,h] = F for all noniden-
tity elements h € H. Let FH act on the set X. If F' acts nontrivially on X
then H acts faithfully on X.

Proof. Let K denote the kernel of FFH on X. If K N H # 1 then we have
F=[F,KNH|<K.

This contradiction proves the claim. [J
Theorem A. Let V' be a nonzero vector space over an algebraically closed field
k and let FH be a Frobenius-like group of odd order acting on V' as a group of
linear transformations such that char(k) does not divide the order of H. Then
Vi has a proper H-reqular direct summand if one of the following holds:
(1) Cv(F) =0,
(i) [V, F] # 0 and char (k) does not divide the order of F'.
Proof. Assume that the theorem is false and choose a counter-example with
minimum dimV + |F H|. We shall proceed in several steps.

(1) We may assume that char(k) does not divide the order of F' and F is a
q-group for some prime q with Cy (F) = 0.

Set char(k) = p. As F is nilpotent, we have F' = F, x F,. If (i) holds
then Cy (F,/) = 0. Notice also that [F},, h] = F}, for every nonidentity element



h € H. So by an induction argument applied to the action of F,y H on V we see
that F is a p’-group.

Let now ¢ be a prime dividing the order of F' such that [V, F,] # 0. As the
action of FyH on [V, Fy| satisfies the hypothesis of the theorem it follows by
induction that V = [V, F,] and F = F,.

(2) The group FH acts irreducibly and faithfully on V.

Let U be an irreducible F'H submodule of V. Note that Cy (F) C Cy (F) =
0. It follows now by induction that U has a proper H-regular direct summand
and hence so does V. Therefore V' is an irreducible F"H-module as claimed.

Notice next that Cpgy(V) = Cp(V)Cu(V). As a consequence of Lemma
2.2 we have Cy (V) = 1. Now an induction argument applied to the action of
(F/Crp(V))H on V yields that Cp(V) = 1 which completes the proof of the
claim.

(3) Vi is homogeneous and hence F' is nonabelian.

By Clifford’s theorem the module V is a direct sum of homogeneous F-
modules permuted transitively by H. We pick now an F-homogeneous compo-
nent W of V and set Hy = Stabyg(W). If H; = 1, then V is free as a kH-module
obviously. Thus we may assume that H; # 1. Applying induction to the action
of FHy on W we conclude that W has a proper Hp-regular direct summand
and hence V' has a proper H-regular direct summand, as desired. This forces
now that Hy = H, that is, Vp is homogeneous.

Assume next that F is abelian. Then F' acts by scalars on V' and so we have
F = [F,h] = 1 for every h € H which is not the case. Therefore F is a
nonabelian group as claimed.

(4) Vi is irreducible.

By (3),V2X&-- @ X for some irreducible kF-module X. Note also that
for every h € H V" =V and hence X" and X are isomorphic as kF-modules.
As H acts coprimely on F', Corollary 8.16 in [4] yields that the module X can
be extended to an F'H-module Y in a unique way subject to the condition that
if x € H then dety () = 1. Then by Corollary 6.17 in [4] there is a k(FH/F)-
module U where V=2 Y @ U. It should be noted that H acts faithfully on



Y by Lemma 2.2. An induction argument applied to the action of the group
(F/Ker(FonY))H on Y shows that F acts faithfully on Y and also dimV =
dimyY . Thus dimiU = 1 and hence X = Vp establishing the claim.

(5) Var is homogeneous for every mazimal F H-invariant subgroup M of F.

Pick a maximal F H-invariant subgroup M of F'. Then F//M is an elementary
abelian group on which H acts irreducibly. Furthermore, the group (F/M)H
is Frobenius as Cp/p(h) = 1 for every nonidentity element h € H. By (4),
VF is irreducible. By Clifford’s theorem there is a collection {Uq,...,Us} of
homogeneous M-modules permuted transitively by F such that Vay = @;_, U;.
On the other hand M < FH and the components Uy,...,Us are permuted
transitively also by F'H. Then by setting Fy = Stabp(Uy), we see that s =
|F : Fy| = |FH : Stabpg(Uy)]. It follows now that s = % = %
whence
|Stabpp (Ur)| = |Fol |H|. As (|Fol, |Stabp(Ur)/Fo|) = 1, a complement Hy of
Fy in Stabpp (Ur) exists. Therefore without loss of generality we may assume
that H < Stabpp (Ur), that is, Stabpp (Uy) = FoH.

On the other hand, Fy/M is either trivial or equal to F//M due to the irre-
ducible action of H on F/M. If trivial, then F//M acts regularly on {Uy,...,Us}.
So for all i = 1,...,s, there is a unique #; € F/M such that U; = Uf Then
we have U™ = Uf_ih for all h € H. This means that H acts regularly on
{Ua,...,Us} and hence for any 0 # w € Us, the set {wh|h € H} forms a basis
for a free kH-module. Thus we may assume that Fy = F. In particular U; is
F H-invariant and hence V}; is homogeneous as claimed.

(6) Vs is homogeneous for every FH -invariant subgroup S of F.

Let S be an F H-invariant subgroup of F. Now by (4) Vp is irreducible.
Then, by Clifford’s theorem we have Vg = @le U; for a collection of S-
homogeneous modules {Uq,...,Us} permuted transitively by F. On the other
hand S < FH and the components Uy, ..., Us are permuted transitively also by
FH. We set now Fy = Stabp(Uy). Then s = |F : Fy| = |FH : Stabpy (Uy)| and
hence we may assume by a similar argument as in the proof of claim (5) that

H stabilizes U;.

10



If s # 1, Fy is contained in a maximal subgroup, say K, of F. However,
every maximal subgroup and hence K is normal in F' as F' is nilpotent. In fact
F, is H-invariant and hence Fy < Npeng K" < FH. Now Npeg K" is contained
in a maximal F'H-invariant subgroup, say M, of F. It follows then by (5) that
Vs is homogeneous, that is, V &2 X @+ - - @ X for some irreducible M-module X.
We consider the decomposition of X into its S-homogeneous components; more
precisely we have Xg =Y; & --- @Y, for S-homogeneous modules Y7,...,Y, by
Clifford’s theorem. Clearly r = s and ¥; = X NY for each ¢ = 1,...,s. Since
M acts transitively on the set {Y7,...,Ys}, its action on the set {Uj,...,Us}
has to be transitive also. So |M : Staby(Ur)| = s = |F : Fy|. As Fy < M we
have the equality F' = M, which is a contradiction. Therefore s = 1, that is, Vg
is homogeneous as claimed.

(7) F is extraspecial such that Z(F) < Z(FH), and the theorem follows.

Pick a characteristic abelian subgroup S of F. By the above claim Vg is
homogeneous and hence S is cyclic. Applying [[2], page 360, Aufgabe 33] to
the action of H on F we see that the group F is either cyclic or extraspecial.
Recall that F' is nonabelian by (8). Then the group F is extraspecial as desired.
As V() is homogeneous we also see that Z(F) < Z(FH). Now Theorem B
applied to the group F'H on V shows that Vi contains the regular kH-module.
This completes the proof of the theorem. [J
Remark. Notice that if F'H is not of odd order, then the theorem above is not
true due to the following observation:

For a prime p, let F be an extraspecial group of order p*”*! and H be the
cyclic group of order p™ + 1. There is a regular action of H on F/®(F) so that
[®(F), H] = 1. Therefore FH is Frobenius-like. By [[2], V.17.13] there exists
an irreducible and faithful kF H-module V over an algebraically closed field of
characteristic coprime to the order of F'H such that Vg ®U = kH where U is the
irreducible trivial H-module. In particular V' does not contain any submodule

isomorphic to the regular H-module, more precisely Cy (H) = 0.

11



3. Applications

Corollary C. Let G be a finite solvable group acted on coprimely by a Frobenius-
like group FH of odd order so that |G, F] # 1. Then Cg(H) # 1.
Proof. We proceed by induction on the order of G. Then F acts trivially on
every proper F H-invariant subgroup of G and hence G is a g-group for some
prime ¢q. Theorem A applied to the action of FH on V = G/®(G) gives the
result. O
Corollary D. Let P be a p-group acted on coprimely by a Frobenius-like group
FH of odd order so that [P,F] = P. Then
(i) the nilpotency class of P is at most 2log, |Cp(H)],
(ii) | P| is bounded in terms of |F| and |Cp(H)|,
(i1i) the rank of P is bounded in terms of |F| and the rank of Cp(H).
Proof. (i) Notice that by theorem the group H fixes a point in each FH-
invariant section of P on which F' acts nontrivially. Then the proof goes similarly
as in the proof of Theorem 1(a) in [6].

(ii) It suffices to bound |P/P’| in the required form since the nilpotency class

of P is bounded in terms of |Cp(H)| by (i). We consider now a series
Po=P <P <P,<..<P,=P

of F'H-invariant normal subgroups of P such that E; = P;/P;_; is an irreducible
F H-module for each ¢ = 1,...,m. Due to coprime action of F' on P and the
fact [P, F| = P we see that Cg, (F) = 0. Then Theorem A applied to the action
of FH on E; yields Cg,(H) # 0 for every i = 1,...,m. As dim E; < |FH| we
get |E;| < |Cg,(H)|'FH! and hence

|P/P'| =TT, |Bil < (T2 [Cr ()P = (Cpypr (H))FHL

That is |P/P’| is bounded in terms of |F| and |Cp(H)| since clearly |H| is
bounded in terms of |F|.
(iii) This can be proven in a similar fashion as in [6] with obvious changes

that is using Corollary 4.1 instead of Lemma 1.2 in [6]. OJ
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